Logo Logo
  • Home
  • Publications
  • Meet Our Team
  • Contact

More Info

  • Email papinlab@virgina.edu
  • Phone Office: (434) 924-8195 Computational lab: (434) 982-6267 Wet lab: (434) 924-8640
  • Location 415 Lane Road, Room 2041 Charlottesville, VA 22903

Related Links

  • PubMed
  • UVA Engineering

Connect With Us

Multidimensional Clinical Surveillance of Pseudomonas aeruginosa Reveals Complex Relationships between Isolate Source, Morphology, and Antimicrobial Resistance

  • Home
  • Blog Details
July 14 2021
  • Published Works

mSphere. 2021 Aug 25;6(4):e0039321. doi: 10.1128/mSphere.00393-21. Epub 2021 Jul 14.

ABSTRACT

Antimicrobial susceptibility in Pseudomonas aeruginosa is dependent on a complex combination of host and pathogen-specific factors. Through the profiling of 971 clinical P. aeruginosa isolates from 590 patients and collection of paired patient metadata, we show that antimicrobial resistance is associated with not only patient-centric factors (e.g., cystic fibrosis and antipseudomonal prescription history) but also microbe-specific phenotypes (e.g., mucoid colony morphology). Additionally, isolates from different sources (e.g., respiratory tract, urinary tract) displayed rates of antimicrobial resistance that were correlated with source-specific antimicrobial prescription strategies. Furthermore, isolates from the same patient often displayed a high degree of heterogeneity, highlighting a key challenge facing personalized treatment of infectious diseases. Our findings support novel relationships between isolate and patient-level data sets, providing a potential guide for future antimicrobial treatment strategies. IMPORTANCE P. aeruginosa is a leading cause of nosocomial infection and infection in patients with cystic fibrosis. While P. aeruginosa infection and treatment can be complicated by a variety of antimicrobial resistance and virulence mechanisms, pathogen virulence is rarely recorded in a clinical setting. In this study, we discovered novel relationships between antimicrobial resistance, virulence-linked morphologies, and isolate source in a large and variable collection of clinical P. aeruginosa isolates. Our work motivates the clinical surveillance of virulence-linked P. aeruginosa morphologies as well as the tracking of source-specific antimicrobial prescription and resistance patterns.

PMID:34259555 | PMC:PMC8386403 | DOI:10.1128/mSphere.00393-21

Previous Post Next Post

Recent Posts

  • Identifying metabolic shifts in Crohn’s disease using’ omics-driven contextualized computational metabolic network models
  • Ten simple rules for launching an academic research career
  • Metabolic Network Models of the Gardnerella Pangenome Identify Key Interactions with the Vaginal Environment
  • Enterococci enhance Clostridioides difficile pathogenesis
  • Genome-scale metabolic modeling reveals increased reliance on valine catabolism in clinical isolates of Klebsiella pneumoniae
Logo

Computational Systems Biology Laboratory; The research group of Dr. Jason Papin in the Department of Biomedical Engineering at the University of Virginia.

Related Links

  • PubMed
  • UVA Engineering

Contact Info

The research group of Dr. Jason Papin in the Department of Biomedical Engineering at the University of Virginia

  • Email: papinlab@virginia.edu
  • Phone (434) 924-8195

  • Home
  • Publications
  • Meet Our Team
  • Contact