Logo Logo
  • Home
  • Publications
  • Meet Our Team
  • Contact

More Info

  • Email papinlab@virgina.edu
  • Phone Office: (434) 924-8195 Computational lab: (434) 982-6267 Wet lab: (434) 924-8640
  • Location 415 Lane Road, Room 2041 Charlottesville, VA 22903

Related Links

  • PubMed
  • UVA Engineering

Connect With Us

Integrated Experimental and Computational Analyses Reveal Differential Metabolic Functionality in Antibiotic-Resistant Pseudomonas aeruginosa

  • Home
  • Blog Details
January 7 2019
  • Published Works

Cell Syst. 2019 Jan 23;8(1):3-14.e3. doi: 10.1016/j.cels.2018.12.002. Epub 2019 Jan 2.

ABSTRACT

Metabolic adaptations accompanying the development of antibiotic resistance in bacteria remain poorly understood. To study this relationship, we profiled the growth of lab-evolved antibiotic-resistant lineages of the opportunistic pathogen Pseudomonas aeruginosa across 190 unique carbon sources. Our data revealed that the evolution of antibiotic resistance resulted in systems-level changes to growth dynamics and metabolic phenotype. A genome-scale metabolic network reconstruction of P. aeruginosa was paired with whole-genome sequencing data to predict genes contributing to observed changes in metabolism. We experimentally validated computational predictions to identify mutations in resistant P. aeruginosa affecting loss of catabolic function. Finally, we found a shared metabolic phenotype between lab-evolved P. aeruginosa and clinical isolates with similar mutational landscapes. Our results build upon previous knowledge of antibiotic-induced metabolic adaptation and provide a framework for the identification of metabolic limitations in antibiotic-resistant pathogens.

PMID:30611675 | PMC:PMC6345604 | DOI:10.1016/j.cels.2018.12.002

Previous Post Next Post

Recent Posts

  • Identifying metabolic shifts in Crohn’s disease using’ omics-driven contextualized computational metabolic network models
  • Ten simple rules for launching an academic research career
  • Metabolic Network Models of the Gardnerella Pangenome Identify Key Interactions with the Vaginal Environment
  • Enterococci enhance Clostridioides difficile pathogenesis
  • Genome-scale metabolic modeling reveals increased reliance on valine catabolism in clinical isolates of Klebsiella pneumoniae
Logo

Computational Systems Biology Laboratory; The research group of Dr. Jason Papin in the Department of Biomedical Engineering at the University of Virginia.

Related Links

  • PubMed
  • UVA Engineering

Contact Info

The research group of Dr. Jason Papin in the Department of Biomedical Engineering at the University of Virginia

  • Email: papinlab@virginia.edu
  • Phone (434) 924-8195

  • Home
  • Publications
  • Meet Our Team
  • Contact