Logo Logo
  • Home
  • Publications
  • Meet Our Team
  • Contact

More Info

  • Email papinlab@virgina.edu
  • Phone Office: (434) 924-8195 Computational lab: (434) 982-6267 Wet lab: (434) 924-8640
  • Location 415 Lane Road, Room 2041 Charlottesville, VA 22903

Related Links

  • PubMed
  • UVA Engineering

Connect With Us

Identifying metabolic shifts in Crohn’s disease using’ omics-driven contextualized computational metabolic network models

  • Home
  • Blog Details
January 5 2023
  • Published Works

Sci Rep. 2023 Jan 5;13(1):203. doi: 10.1038/s41598-022-26816-5.

ABSTRACT

Crohn’s disease (CD) is a chronic inflammatory disease of the gastrointestinal tract. A clear gap in our existing CD diagnostics and current disease management approaches is the lack of highly specific biomarkers that can be used to streamline or personalize disease management. Comprehensive profiling of metabolites holds promise; however, these high-dimensional profiles need to be reduced to have relevance in the context of CD. Machine learning approaches are optimally suited to bridge this gap in knowledge by contextualizing the metabolic alterations in CD using genome-scale metabolic network reconstructions. Our work presents a framework for studying altered metabolic reactions between patients with CD and controls using publicly available transcriptomic data and existing gene-driven metabolic network reconstructions. Additionally, we apply the same methods to patient-derived ileal enteroids to explore the utility of using this experimental in vitro platform for studying CD. Furthermore, we have piloted an untargeted metabolomics approach as a proof-of-concept validation strategy in human ileal mucosal tissue. These findings suggest that in silico metabolic modeling can potentially identify pathways of clinical relevance in CD, paving the way for the future discovery of novel diagnostic biomarkers and therapeutic targets.

PMID:36604447 | DOI:10.1038/s41598-022-26816-5

Previous Post Next Post

Recent Posts

  • Identifying metabolic shifts in Crohn’s disease using’ omics-driven contextualized computational metabolic network models
  • Ten simple rules for launching an academic research career
  • Metabolic Network Models of the Gardnerella Pangenome Identify Key Interactions with the Vaginal Environment
  • Enterococci enhance Clostridioides difficile pathogenesis
  • Genome-scale metabolic modeling reveals increased reliance on valine catabolism in clinical isolates of Klebsiella pneumoniae
Logo

Computational Systems Biology Laboratory; The research group of Dr. Jason Papin in the Department of Biomedical Engineering at the University of Virginia.

Related Links

  • PubMed
  • UVA Engineering

Contact Info

The research group of Dr. Jason Papin in the Department of Biomedical Engineering at the University of Virginia

  • Email: papinlab@virginia.edu
  • Phone (434) 924-8195

  • Home
  • Publications
  • Meet Our Team
  • Contact