Logo Logo
  • Home
  • Publications
  • Meet Our Team
  • Contact

More Info

  • Email papinlab@virgina.edu
  • Phone Office: (434) 924-8195 Computational lab: (434) 982-6267 Wet lab: (434) 924-8640
  • Location 415 Lane Road, Room 2041 Charlottesville, VA 22903

Related Links

  • PubMed
  • UVA Engineering

Connect With Us

Computational approaches to understanding Clostridioides difficile metabolism and virulence

  • Home
  • Blog Details
November 28 2021
  • Published Works

Curr Opin Microbiol. 2022 Feb;65:108-115. doi: 10.1016/j.mib.2021.11.002. Epub 2021 Nov 25.

ABSTRACT

The progress of infection by Clostridioides difficile is strongly influenced by metabolic cues it encounters as it colonizes the gastrointestinal tract. Both colonization and regulation of virulence have a multi-factorial interaction between host, microbiome, and gene expression cascades. While these connections with metabolism have been understood for some time, many mechanisms of control have remained difficult to directly assay due to high metabolic variability among C. difficile isolates and difficult genetic systems. Computational systems offer a means to interrogate structure of complex or noisy datasets and generate useful, tractable hypotheses to be tested in the laboratory. Recently, in silico techniques have provided powerful insights into metabolic elements of C. difficile infection ranging from virulence regulation to interactions with the gut microbiota. In this review, we introduce and provide context to the methods of computational modeling that have been applied to C. difficile metabolism and virulence thus far. The techniques discussed here have laid the foundation for future multi-scale efforts aimed at understanding the complex interplay of metabolic activity between pathogen, host, and surrounding microbial community in the regulation of C. difficile pathogenesis.

PMID:34839237 | DOI:10.1016/j.mib.2021.11.002

Previous Post Next Post

Recent Posts

  • Identifying metabolic shifts in Crohn’s disease using’ omics-driven contextualized computational metabolic network models
  • Ten simple rules for launching an academic research career
  • Metabolic Network Models of the Gardnerella Pangenome Identify Key Interactions with the Vaginal Environment
  • Enterococci enhance Clostridioides difficile pathogenesis
  • Genome-scale metabolic modeling reveals increased reliance on valine catabolism in clinical isolates of Klebsiella pneumoniae
Logo

Computational Systems Biology Laboratory; The research group of Dr. Jason Papin in the Department of Biomedical Engineering at the University of Virginia.

Related Links

  • PubMed
  • UVA Engineering

Contact Info

The research group of Dr. Jason Papin in the Department of Biomedical Engineering at the University of Virginia

  • Email: papinlab@virginia.edu
  • Phone (434) 924-8195

  • Home
  • Publications
  • Meet Our Team
  • Contact