Logo Logo
  • Home
  • Publications
  • Meet Our Team
  • Contact

More Info

  • Email [email protected]
  • Phone Office: (434) 924-8195 Computational lab: (434) 982-6267 Wet lab: (434) 924-8640
  • Location 415 Lane Road, Room 2041 Charlottesville, VA 22903

Related Links

  • PubMed
  • Undergraduate Opportunities
  • Graduate Opportunities
  • UVA Engineering

Connect With Us

Computational approaches to understanding Clostridioides difficile metabolism and virulence

  • Home
  • Blog Details
November 28 2021
  • Published Works

Curr Opin Microbiol. 2022 Feb;65:108-115. doi: 10.1016/j.mib.2021.11.002. Epub 2021 Nov 25.

ABSTRACT

The progress of infection by Clostridioides difficile is strongly influenced by metabolic cues it encounters as it colonizes the gastrointestinal tract. Both colonization and regulation of virulence have a multi-factorial interaction between host, microbiome, and gene expression cascades. While these connections with metabolism have been understood for some time, many mechanisms of control have remained difficult to directly assay due to high metabolic variability among C. difficile isolates and difficult genetic systems. Computational systems offer a means to interrogate structure of complex or noisy datasets and generate useful, tractable hypotheses to be tested in the laboratory. Recently, in silico techniques have provided powerful insights into metabolic elements of C. difficile infection ranging from virulence regulation to interactions with the gut microbiota. In this review, we introduce and provide context to the methods of computational modeling that have been applied to C. difficile metabolism and virulence thus far. The techniques discussed here have laid the foundation for future multi-scale efforts aimed at understanding the complex interplay of metabolic activity between pathogen, host, and surrounding microbial community in the regulation of C. difficile pathogenesis.

PMID:34839237 | DOI:10.1016/j.mib.2021.11.002

Previous Post Next Post

Recent Posts

  • Fecal sphingolipids predict parenteral nutrition associated cholestasis in the neonatal intensive care unit
  • Comparative analyses of parasites with a comprehensive database of genome-scale metabolic models
  • Comparative analyses of parasites with a comprehensive database of geno-scale metabolic models
  • Quantifying cumulative phenotypic and genomic evidence for procedural generation of metabolic network reconstructions
  • Computational approaches to understanding Clostridioides difficile metabolism and virulence
Logo

Computational Systems Biology Laboratory; The research group of Dr. Jason Papin in the Department of Biomedical Engineering at the University of Virginia. Dedicated to discovering revolutionary advancements.

Related Links

  • PubMed
  • Undergraduate Opportunities
  • Graduate Opportunities
  • UVA Engineering

Contact Info

The research group of Dr. Jason Papin in the Department of Biomedical Engineering at the University of Virginia

  • Email: [email protected]
  • Phone (434) 924-8195

© Copyright 2021 Papin Lab. Designed by Sabres Media LLC

  • Home
  • Publications
  • Meet Our Team
  • Contact