Logo Logo
  • Home
  • Publications
  • Meet Our Team
  • Contact

More Info

  • Email [email protected]
  • Phone Office: (434) 924-8195 Computational lab: (434) 982-6267 Wet lab: (434) 924-8640
  • Location 415 Lane Road, Room 2041 Charlottesville, VA 22903

Related Links

  • PubMed
  • Undergraduate Opportunities
  • Graduate Opportunities
  • UVA Engineering

Connect With Us

An updated genome-scale metabolic network reconstruction of Pseudomonas aeruginosa PA14 to characterize mucin-driven shifts in bacterial metabolism

  • Home
  • Blog Details
October 9 2021
  • Published Works

NPJ Syst Biol Appl. 2021 Oct 8;7(1):37. doi: 10.1038/s41540-021-00198-2.

ABSTRACT

Mucins are present in mucosal membranes throughout the body and play a key role in the microbe clearance and infection prevention. Understanding the metabolic responses of pathogens to mucins will further enable the development of protective approaches against infections. We update the genome-scale metabolic network reconstruction (GENRE) of one such pathogen, Pseudomonas aeruginosa PA14, through metabolic coverage expansion, format update, extensive annotation addition, and literature-based curation to produce iPau21. We then validate iPau21 through MEMOTE, growth rate, carbon source utilization, and gene essentiality testing to demonstrate its improved quality and predictive capabilities. We then integrate the GENRE with transcriptomic data in order to generate context-specific models of P. aeruginosa metabolism. The contextualized models recapitulated known phenotypes of unaltered growth and a differential utilization of fumarate metabolism, while also revealing an increased utilization of propionate metabolism upon MUC5B exposure. This work serves to validate iPau21 and demonstrate its utility for providing biological insights.

PMID:34625561 | PMC:PMC8501023 | DOI:10.1038/s41540-021-00198-2

Previous Post Next Post

Recent Posts

  • Fecal sphingolipids predict parenteral nutrition associated cholestasis in the neonatal intensive care unit
  • Comparative analyses of parasites with a comprehensive database of genome-scale metabolic models
  • Comparative analyses of parasites with a comprehensive database of geno-scale metabolic models
  • Quantifying cumulative phenotypic and genomic evidence for procedural generation of metabolic network reconstructions
  • Computational approaches to understanding Clostridioides difficile metabolism and virulence
Logo

Computational Systems Biology Laboratory; The research group of Dr. Jason Papin in the Department of Biomedical Engineering at the University of Virginia. Dedicated to discovering revolutionary advancements.

Related Links

  • PubMed
  • Undergraduate Opportunities
  • Graduate Opportunities
  • UVA Engineering

Contact Info

The research group of Dr. Jason Papin in the Department of Biomedical Engineering at the University of Virginia

  • Email: [email protected]
  • Phone (434) 924-8195

© Copyright 2021 Papin Lab. Designed by Sabres Media LLC

  • Home
  • Publications
  • Meet Our Team
  • Contact